Abstract

Although prospectively integrated design of all aspects of clinical trial data handling is generally perceived as scientifically optimal, trends towards specialization and outsourcing increasingly require the integration of data from numerous contributing organizations in diverse prepackaged forms, and the ability to rapidly add or replace system elements. Systems architectures such as service oriented architecture (SOA) must be modular, forgiving, and scalable. In the Avonex Combination Trial (ACT), the central data repository received data from six sources within five organizations. Successful integration required an early implementation of service oriented architecture (SOA), driven by the matrix of service data providers and their structurally dissimilar internal software approaches. Consequently, clinical research informatics was more visibly and continuously engaged with the study’s scientific and operational leadership than typical in clinical trial management. The ability of the clinical informatics team to bridge technical and administrative gaps between contributing entities proved critical to obtaining high quality data.

Introductions

The Avonex Combination Trial (ACT) was an industry-sponsored investigator-run trial of combination therapies for multiple sclerosis coordinated by Cleveland Clinic’s Multiple Sclerosis Academic Coordinating Center (MSACC). The study informatics team was tasked to accept and integrate data from automated randomization, electronic data capture, clinical laboratory, and adverse event coding contractors, a sponsor laboratory serving as the bioassay core, and the MSACC central image analysis facility. A systems engineering approach was used to define clinical research workflow processes, perform gap analysis, identify cross-disciplinary resources, and develop customized yet scalable tools.

Methods

Software engineering methodology played a key role in designing the architecture for integration across multiple vendors and operational subgroups. Capability Maturity Model Integration (CMMI) process improvement methodology was used to move from ad hoc methods to initial process definitions to repeatable, managed processes, and even to optimized processes in particular areas.

Results

Gap-identification in specific areas facilitated a model-driven development approach, leading to replacement of ad hoc approaches with mature methods in an integrated system fitting seamlessly with third party vendor systems. Site management and coordination capabilities were enhanced for this and future studies. Interim data monitoring was recognized for timeliness and comprehensiveness. Cross-functional collaboration, originally necessitated by resource constraints, reinforced the benefits of including informatics as a fully collaborative element of study design and management.

Discussion

The SOA approach proved well-suited to our inherently awkward task of integrating use of multiple compartmentalized software products and manual processes. The disparate elements were synchronized so as to remain independently functional while interacting relatively seamlessly. High level informatics involvement in study management was crucial to achieving trial objectives in this environment. The approach taken allows for the rapid adaptation of modular components to future projects, without commitment to an underlying mega-architecture.

Acknowledgements


Contact:
Swati Chakraborty
swati.chakraborty@duke.edu
919-668-8223